metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[O-Ethyl N-(4-nitrophenyl)thiocarbamato- κ S](tri-p-tolylphosphine- κ P)gold(I)

Grant A. Broker and Edward R. T. Tiekink*

Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA Correspondence e-mail: Edward.Tiekink@utsa.edu

Received 16 November 2008; accepted 17 November 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.016 Å; R factor = 0.048; wR factor = 0.099; data-to-parameter ratio = 14.2.

A nearly linear coordination geometry for Au is found in the title compound, $[Au(C_9H_9N_2O_3S)(C_{21}H_{21}P)]$. The thiocarbamate ligand is orientated so that the aryl group is in close proximity to the Au atom, consistent with an Au··· π contact [Au···Cg = 3.351 (5) Å; Cg is the centroid of the aromatic ring].

Related literature

For related structures and discussion of structural diversity, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008).

Experimental

Crystal data

 $\begin{bmatrix} Au(C_9H_9N_2O_3S)(C_{21}H_{21}P) \end{bmatrix}$ $M_r = 726.56$ Monoclinic, Cc a = 16.622 (3) Å b = 18.307 (4) Å c = 10.094 (2) Å $\beta = 112.78$ (3)°

Data collection

Rigaku AFC12K/SATURN724 diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{min} = 0.739, T_{max} = 1.000$ (expected range = 0.565–0.765)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.099$ S = 1.064917 reflections 346 parameters 2 restraints $V = 2832.0 (10) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 5.36 mm⁻¹ T = 173 (2) K 0.15 \times 0.12 \times 0.05 mm

```
9217 measured reflections
4917 independent reflections
4682 reflections with I > 2\sigma(I)
R_{\text{int}} = 0.059
```

H-atom parameters constrained $\Delta \rho_{max} = 1.37 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -2.40 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 1980 Friedel pairs Flack parameter: 0.008 (11)

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2516).

References

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.
- Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 568–564.

Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2008). E64, m1582 [doi:10.1107/S1600536808038257]

[O-Ethyl N-(4-nitrophenyl)thiocarbamato-KS](tri-p-tolylphosphine-KP)gold(I)

G. A. Broker and E. R. T. Tiekink

Comment

Phosphinegold(I) thiocarbamides uniformly adopt linear coordination geometries defined by a S and P donor set (Ho *et al.*, 2006; Ho & Tiekink, 2007; Kuan *et al.*, 2008). In these structures the thiocarbamide-O atom is normally located in close proximity to the Au atom but in cases where the donor ability of the phosphine ligand is increased, as in the structure of the title compound (I), a rotation about the S—C bond occurs and the N-bound aryl group is orientated towards the Au centre (Kuan *et al.*, 2008). In (I), Fig. 1, such a rotation has occurred so that the Au···*Cg* distance is 3.351 (5) Å. Interestingly, in the *O*-methyl derivative, the thiocarbamide molecule is situated to allow for an intramolecular Au···O contact (Kuan *et al.*, 2008) suggesting that replacing methyl with a more electronegative ethyl group is sufficient to introduce a difference in the orientation of the molecule.

Experimental

The title compound (I) was prepared following established literature procedures (Ho *et al.*, 2006). Yellow crystals were obtained by the slow evaporation of an acetone solution of (I).

Refinement

The H atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(\text{methyl C})$. The largest peak was 1.46 Å from Au and the deepest hole was 1.02 Å from Au.

Figures

Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.

[O-Ethyl N-(4-nitrophenyl)thiocarbamato-κS](tri-p- tolylphosphine-κP)gold(I)

Crystal data	
[Au(C ₉ H ₉ N ₂ O ₃ S)(C ₂₁ H ₂₁ P)]	$F_{000} = 1432$
$M_r = 726.56$	$D_{\rm x} = 1.704 { m Mg m}^{-3}$
Monoclinic, Cc	Mo $K\alpha$ radiation $\lambda = 0.71070$ Å

Hall symbol: C -2yc a = 16.622 (3) Å b = 18.307 (4) Å c = 10.094 (2) Å $\beta = 112.78$ (3)° V = 2832.0 (10) Å³ Z = 4

Data collection

7 independent reflections
2 reflections with $I > 2\sigma(I)$
= 0.059
$x = 26.5^{\circ}$
$_{1} = 2.4^{\circ}$
-20→20
-22→22
-12→10

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.048$	$w = 1/[\sigma^2(F_o^2) + (0.0306P)^2 + 5.5648P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.099$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.06	$\Delta \rho_{max} = 1.37 \text{ e} \text{ Å}^{-3}$
4917 reflections	$\Delta \rho_{min} = -2.40 \text{ e } \text{\AA}^{-3}$
346 parameters	Extinction correction: none
2 restraints	Absolute structure: Flack (1983), 1980 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.008 (11)
~	

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Cell parameters from 6817 reflections $\theta = 2.4-30.4^{\circ}$ $\mu = 5.36 \text{ mm}^{-1}$ T = 173 (2) K Prism, yellow $0.15 \times 0.12 \times 0.05 \text{ mm}$

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Au	0.49939 (4)	0.473591 (16)	0.74925 (5)	0.03122 (11)
S1	0.59961 (18)	0.56583 (13)	0.8436 (3)	0.0367 (6)
P1	0.39053 (16)	0.39085 (13)	0.6519 (3)	0.0270 (5)
01	0.7581 (5)	0.5885 (4)	0.8868 (7)	0.0355 (16)
02	0.5347 (7)	0.2127 (6)	1.0596 (12)	0.055 (3)
O3	0.5424 (7)	0.1666 (5)	0.8655 (11)	0.074 (3)
N1	0.7339 (6)	0.4654 (4)	0.8938 (9)	0.032 (2)
N2	0.5563 (7)	0.2152 (6)	0.9524 (12)	0.049 (3)
C1	0.6860 (6)	0.4052 (5)	0.9059 (12)	0.030 (2)
C2	0.6591 (6)	0.3981 (6)	1.0185 (11)	0.031 (2)
H2A	0.6693	0.4371	1.0851	0.037*
C3	0.6179 (7)	0.3364 (6)	1.0369 (11)	0.035 (2)
H3A	0.6012	0.3317	1.1166	0.042*
C4	0.6014 (7)	0.2813 (6)	0.9367 (12)	0.031 (2)
C5	0.6258 (7)	0.2864 (6)	0.8200 (12)	0.037 (2)
H5A	0.6141	0.2479	0.7521	0.044*
C6	0.6674 (7)	0.3490 (6)	0.8060 (11)	0.035 (2)
H6A	0.6839	0.3540	0.7262	0.042*
C7	0.7041 (7)	0.5312 (5)	0.8757 (11)	0.031 (2)
C8	0.8498 (7)	0.5729 (7)	0.9210 (12)	0.046 (3)
H8A	0.8685	0.5323	0.9913	0.055*
H8B	0.8849	0.6165	0.9665	0.055*
C9	0.8674 (9)	0.5524 (8)	0.7904 (14)	0.052 (3)
H9A	0.9298	0.5423	0.8188	0.079*
H9B	0.8504	0.5929	0.7214	0.079*
H9C	0.8337	0.5088	0.7458	0.079*
C10	0.2983 (7)	0.4272 (5)	0.5037 (11)	0.029 (2)
C11	0.2704 (7)	0.4981 (6)	0.5072 (13)	0.041 (3)
H11A	0.3001	0.5274	0.5895	0.050*
C12	0.2010 (8)	0.5276 (5)	0.3950 (13)	0.042 (3)
H12A	0.1827	0.5760	0.4029	0.050*
C13	0.1572 (8)	0.4879 (7)	0.2704 (12)	0.038 (3)
C14	0.1839 (9)	0.4159 (6)	0.2679 (12)	0.050 (3)
H14A	0.1525	0.3860	0.1876	0.060*
C15	0.2548 (9)	0.3868 (6)	0.3790 (13)	0.053 (3)
H15A	0.2742	0.3389	0.3705	0.063*
C16	0.0830 (10)	0.5201 (7)	0.1453 (14)	0.059 (4)
H16A	0.0825	0.4991	0.0556	0.088*
H16B	0.0902	0.5731	0.1441	0.088*
H16C	0.0277	0.5088	0.1545	0.088*
C17	0.3478 (6)	0.3540 (5)	0.7770 (10)	0.028 (2)
C18	0.2710 (7)	0.3149 (6)	0.7351 (11)	0.038 (2)
H18A	0.2356	0.3105	0.6357	0.045*
C19	0.2448 (7)	0.2826 (6)	0.8332 (12)	0.038 (2)
H19A	0.1913	0.2565	0.8008	0.045*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C20	0.2947 (8)	0.2870 (6)	0.9794 (11)	0.039 (3)
C21	0.3698 (7)	0.3280 (6)	1.0242 (11)	0.036 (2)
H21A	0.4037	0.3329	1.1241	0.043*
C22	0.3968 (6)	0.3624 (6)	0.9264 (11)	0.037 (2)
H22A	0.4481	0.3915	0.9593	0.044*
C23	0.2631 (9)	0.2489 (7)	1.0866 (13)	0.054 (3)
H23A	0.3121	0.2438	1.1796	0.081*
H23B	0.2402	0.2004	1.0500	0.081*
H23C	0.2170	0.2782	1.0985	0.081*
C24	0.4231 (6)	0.3135 (5)	0.5721 (10)	0.025 (2)
C25	0.4745 (7)	0.3277 (6)	0.4931 (11)	0.037 (2)
H25A	0.4953	0.3758	0.4900	0.044*
C26	0.4948 (7)	0.2714 (6)	0.4193 (11)	0.036 (2)
H26A	0.5285	0.2818	0.3642	0.043*
C27	0.4667 (10)	0.1993 (7)	0.4240 (15)	0.041 (3)
C28	0.4187 (8)	0.1867 (7)	0.5063 (14)	0.044 (3)
H28A	0.4002	0.1383	0.5129	0.053*
C29	0.3960 (7)	0.2420 (6)	0.5805 (12)	0.036 (2)
H29A	0.3626	0.2313	0.6360	0.043*
C30	0.4884 (10)	0.1410 (7)	0.3408 (14)	0.058 (3)
H30A	0.4559	0.0965	0.3420	0.087*
H30B	0.5511	0.1308	0.3842	0.087*
H30C	0.4725	0.1572	0.2413	0.087*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Au	0.03049 (18)	0.03164 (17)	0.03174 (19)	-0.0017 (2)	0.01226 (14)	0.0001 (2)
S1	0.0368 (14)	0.0270 (11)	0.0499 (16)	-0.0055 (11)	0.0207 (13)	-0.0056 (11)
P1	0.0262 (13)	0.0295 (12)	0.0239 (13)	-0.0029 (10)	0.0083 (11)	0.0002 (10)
01	0.036 (4)	0.036 (4)	0.035 (4)	-0.005 (3)	0.015 (3)	0.000 (3)
O2	0.059 (7)	0.052 (6)	0.061 (7)	-0.001 (5)	0.032 (6)	0.022 (5)
O3	0.091 (8)	0.051 (5)	0.070 (7)	-0.019 (6)	0.021 (6)	0.001 (5)
N1	0.030 (5)	0.031 (4)	0.030 (5)	-0.007 (4)	0.006 (4)	-0.007 (4)
N2	0.037 (6)	0.047 (6)	0.042 (7)	-0.006 (5)	-0.007 (5)	0.008 (5)
C1	0.029 (5)	0.028 (5)	0.032 (6)	0.007 (4)	0.011 (5)	0.004 (4)
C2	0.029 (6)	0.033 (5)	0.030 (6)	0.003 (4)	0.012 (5)	0.003 (4)
C3	0.033 (6)	0.048 (6)	0.022 (5)	0.009 (5)	0.008 (5)	0.010 (5)
C4	0.021 (5)	0.035 (6)	0.035 (6)	0.001 (5)	0.009 (5)	0.004 (5)
C5	0.033 (6)	0.032 (5)	0.047 (7)	-0.010 (5)	0.018 (5)	-0.013 (5)
C6	0.044 (6)	0.040 (6)	0.027 (6)	0.003 (5)	0.019 (5)	-0.002 (5)
C7	0.033 (6)	0.035 (5)	0.025 (5)	-0.018 (4)	0.012 (5)	-0.001 (4)
C8	0.036 (6)	0.060 (7)	0.036 (6)	-0.020 (6)	0.008 (5)	-0.002 (5)
C9	0.049 (8)	0.056 (8)	0.049 (8)	-0.011 (7)	0.015 (7)	-0.002 (7)
C10	0.034 (6)	0.027 (5)	0.029 (6)	0.000 (4)	0.017 (5)	0.002 (4)
C11	0.042 (7)	0.030 (5)	0.046 (7)	0.002 (5)	0.010 (6)	-0.002 (5)
C12	0.049 (7)	0.024 (5)	0.042 (7)	0.003 (5)	0.006 (6)	-0.003 (4)
C13	0.036 (6)	0.046 (6)	0.031 (6)	0.007 (5)	0.013 (5)	0.011 (5)

C14	0.068 (9)	0.041 (6)	0.026 (6)	0.016 (6)	0.001 (6)	-0.006 (5)
C15	0.067 (9)	0.028 (5)	0.049 (7)	0.007 (6)	0.008 (7)	-0.008 (5)
C16	0.077 (10)	0.050(7)	0.046 (8)	0.028 (7)	0.021 (8)	0.009 (6)
C17	0.030 (5)	0.039 (5)	0.021 (5)	0.007 (4)	0.016 (5)	0.010 (4)
C18	0.033 (6)	0.052 (6)	0.025 (5)	-0.008 (5)	0.009 (5)	-0.001 (5)
C19	0.031 (6)	0.043 (6)	0.038 (6)	-0.006 (5)	0.012 (5)	0.005 (5)
C20	0.052 (7)	0.041 (6)	0.024 (6)	-0.003 (5)	0.014 (5)	-0.001 (5)
C21	0.040 (6)	0.036 (5)	0.032 (6)	0.009 (5)	0.013 (5)	-0.004 (4)
C22	0.024 (5)	0.051 (6)	0.033 (6)	0.002 (5)	0.009 (5)	0.000 (5)
C23	0.068 (9)	0.059 (8)	0.043 (7)	0.006 (7)	0.032 (7)	0.014 (6)
C24	0.019 (5)	0.029 (5)	0.024 (5)	-0.005 (4)	0.004 (4)	0.005 (4)
C25	0.038 (6)	0.036 (5)	0.044 (6)	-0.006 (5)	0.025 (6)	0.006 (5)
C26	0.044 (6)	0.039 (6)	0.036 (6)	0.005 (5)	0.029 (5)	0.002 (5)
C27	0.047 (8)	0.035 (6)	0.039 (8)	0.013 (6)	0.015 (7)	0.008 (5)
C28	0.049 (8)	0.048 (7)	0.044 (8)	0.005 (6)	0.025 (7)	0.002 (6)
C29	0.036 (6)	0.036 (6)	0.037 (6)	-0.001 (5)	0.015 (5)	0.005 (5)
C30	0.080 (10)	0.049 (7)	0.051 (8)	0.010(7)	0.032 (8)	-0.003 (6)

Geometric parameters (Å, °)

2.271 (3)	C13—C16	1.502 (17)
2.303 (3)	C14—C15	1.380 (17)
1.757 (11)	C14—H14A	0.9500
1.801 (9)	C15—H15A	0.9500
1.804 (11)	C16—H16A	0.9800
1.813 (10)	C16—H16B	0.9800
1.358 (11)	C16—H16C	0.9800
1.454 (13)	C17—C18	1.380 (14)
1.266 (15)	C17—C22	1.417 (14)
1.207 (14)	C18—C19	1.361 (13)
1.287 (12)	C18—H18A	0.9500
1.392 (12)	C19—C20	1.388 (15)
1.464 (15)	С19—Н19А	0.9500
1.380 (13)	C20—C21	1.375 (16)
1.389 (14)	C20—C23	1.540 (14)
1.371 (15)	C21—C22	1.384 (14)
0.9500	C21—H21A	0.9500
1.378 (16)	C22—H22A	0.9500
0.9500	C23—H23A	0.9800
1.390 (14)	С23—Н23В	0.9800
1.374 (14)	С23—Н23С	0.9800
0.9500	C24—C29	1.397 (13)
0.9500	C24—C25	1.400 (12)
1.505 (16)	C25—C26	1.388 (14)
0.9900	C25—H25A	0.9500
0.9900	C26—C27	1.407 (17)
0.9800	C26—H26A	0.9500
0.9800	C27—C28	1.376 (18)
0.9800	С27—С30	1.487 (17)
	$\begin{array}{l} 2.271 \ (3) \\ 2.303 \ (3) \\ 1.757 \ (11) \\ 1.801 \ (9) \\ 1.804 \ (11) \\ 1.813 \ (10) \\ 1.358 \ (11) \\ 1.454 \ (13) \\ 1.266 \ (15) \\ 1.207 \ (14) \\ 1.287 \ (12) \\ 1.392 \ (12) \\ 1.464 \ (15) \\ 1.380 \ (13) \\ 1.389 \ (14) \\ 1.371 \ (15) \\ 0.9500 \\ 1.378 \ (16) \\ 0.9500 \\ 1.378 \ (16) \\ 0.9500 \\ 1.374 \ (14) \\ 0.9500 \\ 0.9500 \\ 1.505 \ (16) \\ 0.9900 \\ 0.9800 \\ 0.9800 \\ 0.9800 \\ 0.9800 \end{array}$	2.271 (3) $C13-C16$ $2.303 (3)$ $C14-C15$ $1.757 (11)$ $C14-H14A$ $1.801 (9)$ $C15-H15A$ $1.804 (11)$ $C16-H16A$ $1.813 (10)$ $C16-H16B$ $1.358 (11)$ $C16-H16C$ $1.454 (13)$ $C17-C18$ $1.266 (15)$ $C17-C22$ $1.207 (14)$ $C18-H18A$ $1.392 (12)$ $C19-C20$ $1.464 (15)$ $C19-H19A$ $1.380 (13)$ $C20-C21$ $1.389 (14)$ $C20-C23$ $1.371 (15)$ $C21-C22$ 0.9500 $C21-H21A$ $1.378 (16)$ $C22-H22A$ 0.9500 $C24-C29$ 0.9500 $C24-C25$ $1.505 (16)$ $C25-C26$ 0.9900 $C26-C27$ 0.9800 $C27-C28$ 0.9800 $C27-C28$ 0.9800 $C27-C28$ 0.9800 $C27-C30$

C10—C11	1.384 (14)	C28—C29	1.396 (16)
C10-C15	1.396 (15)	C28—H28A	0.9500
C11—C12	1.376 (16)	С29—Н29А	0.9500
C11—H11A	0.9500	C30—H30A	0.9800
C12—C13	1.389 (16)	С30—Н30В	0.9800
C12—H12A	0.9500	С30—Н30С	0.9800
C13—C14	1.395 (15)		
P1—Au—S1	174.54 (10)	C15—C14—H14A	119.1
C7—S1—Au	108.4 (3)	C13—C14—H14A	119.1
C17—P1—C10	106.3 (5)	C14—C15—C10	120.6 (10)
C17—P1—C24	106.6 (4)	C14—C15—H15A	119.7
C10—P1—C24	102.9 (4)	С10—С15—Н15А	119.7
C17—P1—Au	114.2 (4)	С13—С16—Н16А	109.5
C10—P1—Au	113.1 (3)	C13—C16—H16B	109.5
C24—P1—Au	112.8 (3)	H16A—C16—H16B	109.5
C7—O1—C8	117.8 (8)	C13—C16—H16C	109.5
C7—N1—C1	123.4 (9)	H16A—C16—H16C	109.5
O3—N2—O2	123.8 (11)	H16B—C16—H16C	109.5
O3—N2—C4	119.5 (11)	C18—C17—C22	117.6 (8)
O2—N2—C4	116.7 (11)	C18—C17—P1	123.3 (8)
C2—C1—C6	118.4 (9)	C22—C17—P1	119.0 (8)
C2—C1—N1	121.7 (10)	C19—C18—C17	121.4 (10)
C6—C1—N1	119.8 (9)	C19—C18—H18A	119.3
C3—C2—C1	121.9 (10)	C17—C18—H18A	119.3
C3—C2—H2A	119.1	C18—C19—C20	121.4 (10)
C1—C2—H2A	119.1	C18—C19—H19A	119.3
C2—C3—C4	118.1 (9)	С20—С19—Н19А	119.3
C2—C3—H3A	120.9	C21—C20—C19	118.3 (10)
С4—С3—Н3А	120.9	C21—C20—C23	122.0 (10)
$C_3 - C_4 - C_5$	122.1 (10)	C19 - C20 - C23	1197(11)
C3 - C4 - N2	119.4 (10)	C20—C21—C22	121.2 (10)
C5-C4-N2	118.5 (10)	C20—C21—H21A	119.4
C6—C5—C4	117.9 (10)	C22—C21—H21A	119.4
С6—С5—Н5А	121.0	$C_{21} - C_{22} - C_{17}$	119 9 (10)
С4—С5—Н5А	121.0	C21—C22—H22A	120.0
C5—C6—C1	121.5 (9)	C17—C22—H22A	120.0
C5—C6—H6A	119.3	C20—C23—H23A	109.5
C1—C6—H6A	119.3	C20—C23—H23B	109.5
N1—C7—O1	120.3 (10)	H23A—C23—H23B	109.5
N1—C7—S1	131.5 (8)	C20—C23—H23C	109.5
O1—C7—S1	108.1 (7)	H23A—C23—H23C	109.5
O1—C8—C9	112.5 (9)	H23B—C23—H23C	109.5
O1—C8—H8A	109.1	C29—C24—C25	119.5 (9)
С9—С8—Н8А	109.1	C29—C24—P1	123.0 (8)
O1—C8—H8B	109.1	C25—C24—P1	117.4 (7)
С9—С8—Н8В	109.1	C26—C25—C24	119.7 (9)
H8A—C8—H8B	107.8	С26—С25—Н25А	120.1
С8—С9—Н9А	109.5	C24—C25—H25A	120.1
С8—С9—Н9В	109.5	C25—C26—C27	121.7 (9)
			· /

Н9А—С9—Н9В	109.5	C25—C26—H26A	119.2
С8—С9—Н9С	109.5	C27—C26—H26A	119.2
Н9А—С9—Н9С	109.5	C28—C27—C26	117.1 (12)
Н9В—С9—Н9С	109.5	C28—C27—C30	123.1 (13)
C11—C10—C15	117.3 (10)	C26—C27—C30	119.9 (11)
C11—C10—P1	120.7 (8)	C27—C28—C29	122.9 (12)
C15-C10-P1	122.0 (8)	C27—C28—H28A	118.5
C12-C11-C10	121.9 (10)	C29—C28—H28A	118.5
C12—C11—H11A	119.0	C24—C29—C28	119.0 (10)
C10-C11-H11A	119.0	С24—С29—Н29А	120.5
C11—C12—C13	121.3 (10)	С28—С29—Н29А	120.5
C11—C12—H12A	119.3	С27—С30—Н30А	109.5
C13—C12—H12A	119.3	С27—С30—Н30В	109.5
C12—C13—C14	116.8 (10)	H30A—C30—H30B	109.5
C12—C13—C16	121.9 (11)	С27—С30—Н30С	109.5
C14—C13—C16	121.3 (12)	H30A—C30—H30C	109.5
C15—C14—C13	121.9 (11)	H30B-C30-H30C	109.5
P1—Au—S1—C7	-170.4 (10)	C12—C13—C14—C15	-4.9 (19)
S1—Au—P1—C17	-86.1 (11)	C16—C13—C14—C15	176.6 (12)
S1—Au—P1—C10	35.6 (12)	C13-C14-C15-C10	5(2)
S1—Au—P1—C24	151.9 (10)	C11—C10—C15—C14	-3.5 (18)
C7—N1—C1—C2	-63.7 (14)	P1	179.4 (10)
C7—N1—C1—C6	119.0 (11)	C10—P1—C17—C18	41.1 (10)
C6—C1—C2—C3	2.6 (15)	C24—P1—C17—C18	-68.2 (9)
N1—C1—C2—C3	-174.8 (9)	Au—P1—C17—C18	166.5 (8)
C1—C2—C3—C4	-1.9 (15)	C10—P1—C17—C22	-141.8 (8)
C2—C3—C4—C5	0.6 (16)	C24—P1—C17—C22	108.9 (9)
C2—C3—C4—N2	-179.0 (9)	Au—P1—C17—C22	-16.5 (9)
O3—N2—C4—C3	-179.4 (11)	C22-C17-C18-C19	-3.0 (15)
O2—N2—C4—C3	0.1 (16)	P1-C17-C18-C19	174.2 (9)
O3—N2—C4—C5	0.9 (16)	C17—C18—C19—C20	-0.6 (17)
O2—N2—C4—C5	-179.6 (10)	C18—C19—C20—C21	3.2 (16)
C3—C4—C5—C6	-0.2 (16)	C18—C19—C20—C23	-179.4 (10)
N2—C4—C5—C6	179.5 (10)	C19—C20—C21—C22	-2.0 (16)
C4—C5—C6—C1	1.0 (17)	C23—C20—C21—C22	-179.4 (10)
C2—C1—C6—C5	-2.1 (16)	C20-C21-C22-C17	-1.5 (15)
N1—C1—C6—C5	175.3 (10)	C18—C17—C22—C21	4.0 (15)
C1—N1—C7—O1	169.9 (9)	P1—C17—C22—C21	-173.2 (8)
C1—N1—C7—S1	-7.1 (16)	C17—P1—C24—C29	15.8 (10)
C8—O1—C7—N1	-0.7 (13)	C10—P1—C24—C29	-95.9 (9)
C8—O1—C7—S1	176.9 (7)	Au—P1—C24—C29	142.0 (8)
Au—S1—C7—N1	-21.9 (11)	C17—P1—C24—C25	-167.3 (8)
Au—S1—C7—O1	160.9 (5)	C10—P1—C24—C25	81.1 (9)
C7—O1—C8—C9	83.3 (12)	Au—P1—C24—C25	-41.1 (9)
C17—P1—C10—C11	87.5 (9)	C29—C24—C25—C26	2.7 (16)
C24—P1—C10—C11	-160.6 (8)	P1-C24-C25-C26	-174.4 (9)
Au—P1—C10—C11	-38.6 (9)	C24—C25—C26—C27	-1.4 (18)
C17—P1—C10—C15	-95.5 (10)	C25—C26—C27—C28	-1(2)
C24—P1—C10—C15	16.3 (10)	C25—C26—C27—C30	178.7 (12)

Au—P1—C10—C15	138.4 (9)	C26—C27—C28—C29	1(2)
C15-C10-C11-C12	2.0 (17)	C30—C27—C28—C29	-177.9 (13)
P1-C10-C11-C12	179.2 (9)	C25—C24—C29—C28	-1.9 (16)
C10-C11-C12-C13	-2.1 (18)	P1-C24-C29-C28	175.0 (9)
C11-C12-C13-C14	3.3 (18)	C27—C28—C29—C24	-0.3 (19)
C11-C12-C13-C16	-178.2 (11)		

